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ABSTRACT Polymicrobial communities are shaped by beneficial and antagonistic 
interactions between the different species. One of the key players for competition is 
the type VI secretion system, a large multiprotein complex that assembles a contractile 
tail-like structure spanning the entire cytoplasm. This contractile tail is comprised of an 
inner tube tipped by a puncturing complex and wrapped by a sheath that polymerizes 
under an extended conformation. Contraction of the sheath propels the needle-like 
tube complex toward the target cell where it delivers effectors. The ClpV AAA+ ATPase 
is then recruited to the contracted sheath and uses the energy of ATP hydrolysis for 
its disassembly. Due to the size of the apparatus and its mechanism of disassembly, 
it is thought that the T6SS mechanism of action is costly for the cell, and hence can 
significantly impact its fitness. By using enteroaggregative Escherichia coli strains in 
which the T6SS is arrested at different stages of its mechanism of action, we show here 
that there is no significant cost associated with T6SS synthesis, assembly, contraction, or 
disassembly in vitro.

IMPORTANCE Bacteria use weapons to deliver effectors into target cells. One of these 
weapons, the type VI secretion system (T6SS), assembles a contractile tail acting as a 
spring to propel a toxin-loaded needle. Due to its size and mechanism of action, the T6SS 
was intuitively thought to be energetically costly. Here, using a combination of mutants 
and growth measurements in liquid medium, on plates, and in competition experiments, 
we show that the T6SS does not entail a growth cost to enteroaggregative Escherichia 
coli.

KEYWORDS growth, cost, energy, ATP, protein transport, secretion system, contraction, 
toxin delivery, bacterial competition

B acteria do not live alone but rather form mixed communities in which they may 
deploy cooperative or aggressive behaviors/strategies (1–3). Competition occurs in 

all environments but is better studied in the case of pathogenesis, where the resident 
microbiota of the host competes with invading pathogens, a phenomenon known as 
colonization resistance (4–6). However, pathogens evolved mechanisms to overcome 
colonization resistance and to establish themselves in the desired environment (7). 
Bacterial competition can result from exploitation or interference. While the exploita
tion strategy is based on the exclusion of bacterial rivals from resource availability, 
the interference strategy relies on a direct growth inhibition of competitors, notably 
through the action of antimicrobial molecules (8, 9). Interference competition depends 
on contact-dependent or -independent mechanisms. Contact-independent competi
tion does not require contact between the two competitor cells but rather acts at 
distance by secreting soluble and diffusible molecules, peptides, or proteins, such as 
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antibiotics, polyketides, lantibiotics, or bacteriocins (10–12). In contrast, contact-depend
ent mechanisms need intimate and sometimes prolonged contact between the 
attacker cell and its target to transfer antimicrobials. Delivery of these antimicrobials 
(usually proteinaceous toxins) requires dedicated machineries such as the type IV (T4SS), 
type 5b (T5bSS), type VI (T6SS), and type VII (T7SS) secretion systems (13–18). The 
synthesis, biogenesis, and mechanism of action of these machineries can be energeti
cally costly and may constitute an obstacle to efficient competition. An energetic cost 
has been proposed in the case of the T6SS, which assembles a long structure that spans 
the entire cell body width (19–21). The T6SS belongs to the broad family of contrac
tile injection systems that use a spring-like mechanism to propel an effector-loaded 
needle toward target cells (22–25). The T6SS is widespread in Gram-negative bacteria 
and notably in Pseudomonadata and Bacteroidata (26–28). The T6SS is comprised of 
two main complexes: the membrane complex (MC) and the phage-like tail contractile 
structure. In most Pseudomonadata, the MC)is constituted of the TssJ-L-M proteins in a 
15:10:10 stoichiometry that assembles a cell envelope-spanning channel-like structure 
(29–32). This MC serves as a docking station for the tail (33–35). The tail is constituted 
of the baseplate (BP), the assembly platform for the tubular contractile tube/sheath 
structure. The BP is composed of six wedges comprised of TssEFGK of 1:2:1:6 stoichiom
etry, arranged around the trimeric VgrG spike that is sharpened by PAAR (36–39). The 
tail tube/sheath complex is composed of the inner tube made of stacked Hcp hexame
ric rings wrapped by the sheath made of TssBC complexes (19). The tail tube/sheath 
complex, which requires ~720 copies of each tube and sheath protein in enteroaggre
gative Escherichia coli (EAEC), is assembled into a metastable extended conformation 
that stores energy for the contraction (20, 25). Contraction of the sheath propels the 
tube and spike loaded with effectors toward the target cell (19, 20). The strength of 
the contraction and the sharpness of the deployed spike are thought to puncture the 
target cell membrane to directly deliver the effectors inside the target (20, 24). After 
contraction, the contracted sheath recruits the ClpV ATPase, which uses ATP to disaggre
gate and disassemble sheath subunits (40–42). Due to its large number of subunits 
(the T6SS is assembled from about 2,300 polypeptides), its large structure spanning the 
cytoplasm, and its ATP-dependent disassembly, it has been proposed that the T6SS is 
energetically costly (20, 43, 44). Indeed, a recent work showed that the Campylobacter 
jejuni T6SS activity induces a cost in environmental stress conditions that can result in the 
extinction of T6SS+ cells (45). However, recent studies showed that it is unlikely the case 
in Bacteroides fragilis, Vibrio cholerae, and V. fischerii (46–48). Here, using strains in which 
the T6SS is arrested at different stages of its mechanism of action, we show that there is 
no significant cost associated with T6SS synthesis, assembly, contraction, or disassembly 
in EAEC.

RESULTS

To determine whether the different stages of the T6SS mechanism of action induce a 
measurable cost, we engineered four different strains from the parental EAEC wild-type 
(WT) reference strain 17–2 (Fig. 1). Strain Δsci1 carries a deletion of the entire T6SS gene 
cluster and hence does not express nor produce the T6SS. Strain ΔtssJ carries a deletion 
of the tssJ gene, which is the penultimate gene of the T6SS cluster in EAEC (Fig. 1A), 
encoding the first protein to be recruited during T6SS biogenesis (31). In addition, TssJ is 
a minor but essential core-component of the T6SS, with only 15 copies per T6SS (32, 49). 
This strain, therefore, expresses T6SS genes, produces the T6SS subunits, but is unable 
to assemble the apparatus. Strain tssB-N3 carries a 3-codon insertion in the tssB gene, 
yielding a TssB variant protein assembling the sheath under the extended conformation 
but unable to contract (50, 51). In this strain, the T6SS is expressed, produced, assembled, 
but the sheath does not contract. Finally, strain ΔclpV carries a deletion of the clpV 
gene encoding the AAA+ ATPase responsible for the disassembly of the contracted 
sheath (40–42, 52–54). In this strain, the T6SS is expressed, produced, assembled but 
the sheath is not disassembled after contraction. Taken together, these strains may 
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provide information on the cost for T6SS subunit production, T6SS biogenesis, sheath 
contraction, and disassembly. None of the ΔtssJ, tssB-N3, and ΔclpV strains was impacted 
in terms of T6SS gene expression and production, as shown by qRT-PCR analyses of 
tssK, vgrG, and tagA genes (Fig. S1A) and semi-quantitative immunodetection of the 
Hcp protein (Fig. S1B). All the expected phenotypes of these strains were confirmed 
by recording sheath number and dynamics after insertion of a fluorescent reporter on 

FIG 1 EAEC mutant strains used in this work. (A) Schematic representation of the EAEC sci1 T6SS gene cluster. Genes 

encoding T6SS subunits and effector/unknown proteins are shown in color and white, respectively. The genes correspond

ing to the mutants used in this work are indicated. (B) Schematic representation of the different stages of the T6SS 

mechanism of action: synthesis of the T6SS components, assembly, sheath contraction, and disassembly. The stages in 

which T6SS biogenesis are arrested in the different mutant strains are indicated. (C) Phenotypes of the indicated strains 

regarding expression/production, assembly, contraction, and disassembly of the T6SS (– and red highlighting, no; +and green 

highlighting, yes).
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the TssB sheath subunit (Fig. S2). The fluorescence signal was diffuse in the ΔtssJ strain, 
whereas contraction and disassembly of the sheaths were abolished in tssB-N3 and ΔclpV 
cells, respectively (Fig. S2).

We first measured the generation times of the different strains cultivated at 37°C 
in SIM medium, a synthetic minimal medium with low iron in which the EAEC T6SS is 
expressed (55). The 15-h growth curves of the different strains were superimposable (Fig. 
2A), yielding comparable doubling times (Fig. 2B). This result suggests that the T6SS does 
not incur a cost to the producing bacteria. However, the SIM medium does not fully 
recapitulate the physiological conditions found in the colon in terms of the presence of 

FIG 2 T6SS mutations do not impact growth in liquid culture. (A) 15-h growth curves of the wild-type (WT) strain and 

the indicated isogenic mutants grown in SIM medium are shown on the same graph. The values represent the average 

and standard deviation from 12 measures (3 biological replicates, 4 independent measures/replicate). (B) Box-and-whisker 

representation of the growth rates of the WT strain and its isogenic mutants in SIM medium (horizontal bar, median value; 

lower and upper boundaries of the box plot, 25% and 75% percentiles, respectively; whiskers, 10%, and 90% percentiles). The 

independent raw values are shown as circles.
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bile salts (0.5%–2%; 56), osmolarity (0.4–1.3 M of sorbitol; 57), oxidative stress (0.1 mM of 
H2O2, 58), or pH (pH 6; 59). No differences between the 17–2 strain and its isogenic Δsci1 
mutant were also noted when the strains were grown in the presence of 1% of bile salts, 
0.8 M of sorbitol, 0.1 mM of H2O2, at pH 6, or with a combination of these four stresses 
(Fig. S3).

However, while produced in these conditions, the EAEC T6SS is not fully activated as 
it has been established that T6SS is firing on solid conditions (60). We thus repeated the 
experiments with the same strains grown on solid SIM agar plates. Cell cultures were 
spotted on filter disks placed on agar. Disks were harvested at regular intervals, cells 
resuspended in SIM, and the optical density measured at λ = 600 nM. Here again, the 
growth of the different strains was very similar (Fig. 3A), with no statistical differences 
(Fig. 3B). It is noteworthy that, as expected, the generation time on solid medium (0.73 
h−1) is significantly lower compared to the liquid conditions (0.89 h−1).

To better compare the growth of mutant strains with that of the parental WT strain, a 
17–2 strain deleted of the lacZ gene was used in in vitro challenge experiments. In 
addition, to avoid intoxication of Δsci1 cells by WT cells due to the delivery of the Tle1 
toxin encoded within the cluster (61), the Δsci1 strain was transformed with a low-copy 
vector expressing the Tle1 immunity, Tli1. The 17–2 ΔlacZ and Δsci1 pTli1 strains 
presented identical growth curves and generation times compared to the WT strain, 
both in liquid and solid. Indeed, challenge experiments between the WT and the ΔlacZ 
strains demonstrated they grow identically (Fig. 4A) and presented a competitive index 
of 1.02 ± 0.07 after a 96-h co-culture (Fig. 4B). Co-culture of the ΔlacZ strain with the four 
isogenic T6SS mutants showed a competitive index close to one for all combinations 
(Δsci1 pTli1, 0.99 ± 0.05; ΔtssJ, 1.03 ± 0.06; tssB-N3, 1 ± 0.04; ΔclpV 0.99 ± 0.06) (Fig. 4B), 
reflecting the observation that the initial ratio between the ΔlacZ and the mutant strains 
did not significantly vary for 96 h (Fig. 4A). Here again, no differences between the 17 and 
2 strain and its isogenic Δsci1 mutant were observed when the strains were grown in the 
presence of 1% of bile salts, 0.8 M of sorbitol, 0.1 mM of H2O2, at pH 6, or with a combina
tion of these four stresses (Fig. S4). Taken together, these results demonstrate that 
production, assembly, contraction, and disassembly of the T6SS do not entail a signifi-
cant fitness cost to EAEC in laboratory conditions in which the T6SS is active, or in 
conditions mimicking the host environment.

DISCUSSION

By using various mutant strains arrested at different stages of T6SS biogenesis and 
mechanism of action, we show here that the synthesis, assembly, sheath contraction, and 
disassembly of the T6SS do not incur a measurable energetic cost to EAEC. This conclu
sion is similar to what has been recently observed in Vibrio cholerae (48) and Bacteroides 
fragilis (46), while another study suggested that no fitness cost is associated with fast-
growing exponential-phase Vibrio fischeri cells but that the T6SS entails a cost in 
stationary phase (47). By contrast, it was shown that the growth of Campylobacter jejuni 
T6SS+ cells was significantly impaired compared to that of T6SS- cells when cultured in 
the presence of bile salts, a medium that mimics the in vivo conditions (45). This could be 
due to the assembly of the T6SS MC that may alter the envelope permeability barrier, 
hence increasing the entry of toxic compounds, rather than the cost of the T6SS per se. In 
our conditions, we did not observe any impact of the presence of physiological levels of 
bile salts, or of osmolarity, oxidative, and pH conditions mimicking the human colon on 
the growth of EAEC T6SS+ and T6SS- cells. Nevertheless, all these studies have been 
performed in vitro, and one may expect the in vivo conditions to be significantly different. 
Indeed, in in vivo conditions, T6SS+ cells are in contact with other bacterial species, 
including T6SS- species, T6SS-resistant strains, and T6SS-armed competitors using a tit-
for-tat response, which may lead to a rock/scissor/paper-like dynamics. Using a T6SS 
could not be advantageous for a bacterium in vivo or in the host and may thus depend 
on the composition of the microbial community or of the ecosystem (46, 62). Several 
studies have shown that the T6SS provides a significant advantage for colonization in 
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experimental host models, notably for Salmonella enterica Typhimurium, Shigella sonnei, 
Bacteroides fragilis, Vibrio cholerae, and Klebsiella pneumoniae (63–70). However, it is not 
yet known how the T6SS impacts the persistence in long-term experiments. Robitaille et 
al. recently showed an evolutionary loss of the T6SS in B. fragilis in vivo, suggesting that 
the T6SS entails a cost in the presence of resistant strains, whereas T6SS+ cells offset the 
cost paid for T6SS in the presence of sensitive cells (46). By contrast, the presence of T6SS 
in most Bacteroidota and Pseudomonadata species, particularly those recently isolated, 

FIG 3 T6SS mutations do not impact growth on solid agar. (A) 24-h growth curves of the wild-type (WT) strain and the 

indicated isogenic mutants grown on SIM agar plates are shown on the same graph. The values represent the average and 

standard deviation from nine measures (three biological replicates, three independent measures/replicates). (B) Box-and-

whisker representation of the growth rates of the WT strain and its isogenic mutants on SIM agar plates (horizontal bar, 

median value; lower and upper boundaries of the box plot, 25% and 75% percentiles, respectively; whiskers, 10% and 90% 

percentiles). The independent raw values are shown as circles.
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suggests that a selective pressure maintains T6SS genes, highlighting its importance in 
polymicrobial environments.

Given that cryo-tomography and fluorescence microscopy recordings showed that 
the T6SS assembles a spectacular tail structure that traverses the cytoplasm (19, 21), 
it was expected to be energetically costly (20, 43, 44). This work and the studies 
in Vibrio and Bacteroides, however, contradict this postulate. Indeed, a T6SS with 
a stoichiometry of TssJ15-TssL10-TssM10-TssG6-TssF12-TssE6-TssK36-VgrG3-PAAR-Hcp720-
TssB720-TssC720-TssA12 represents about 2,300 polypeptides, which is far lower than 
the 3–10 × 106 estimation for the total number of proteins in a single E. coli cell 
(71), suggesting that synthesis of a T6SS does not have a significant metabolic cost. 
A rapid calculation of the number of ATP molecules required for synthesis, assembly, and 
disassembly of a T6SS is also in agreement with the experimental data. Assuming the 
necessity of five ATP molecules for the addition of one nucleotide during transcription 
(25 kb T6SS transcript in EAEC) and five ATPs per amino-acid during protein synthesis 

FIG 4 T6SS mutants do not outcompete the wild-type strain. (A) Variation of the ratio of the indicated strain and 17–2ΔlacZ 

over time. The values represent the average and standard deviation from 12 measures (4 biological replicates, 3 independent 

measures/replicates). (B) Competitive index (indicated strain/ΔlacZ ratio after 96 h of co-culture divided by the initial indicated 

strain/ΔlacZ ratio). The values represent the average and standard deviation from 12 measures (4 biological replicates, 3 

independent measures/replicate).
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(~750,000 amino-acids for a T6SS structure) (72), the synthesis of a T6SS would require ~4 
× 106 ATPs, while its disassembly (given that ClpXP-mediated denaturation of a substrate 
requires hydrolysis of ~550 ATPs, 73) would require 750,000 ATPs (20). The cost of 
synthesis and disassembly of a T6SS structure is therefore in the 106–107 range, which is, 
here again, significantly different than the total number of ATP molecules estimated per 
E. coli cell, ~3 × 1012 (ATP concentration in E. coli: 2.6 mM (74); estimated volume of EAEC 
cell: 1.8 µm3). The fact that this secretion system does not entail a significant energetic 
cost is the opposite to the type III secretion system, whose secretion of translocon 
proteins and effectors has been shown to cause a significant growth retardation in 
Salmonella Typhimurium (75)

Taken together, our results show that the synthesis, assembly, and disassembly of the 
T6SS is not energetically costly to enteroaggregative E. coli and hence does not incur a 
significant fitness cost in vitro. However, the activity of a T6SS could be costly for the cell 
in the polymicrobial environment in terms of survival, and notably when in contact with 
T6SS defensive bacteria that retaliate following an attack.

MATERIALS AND METHODS

Bacterial strains, growth conditions, media, and antibiotics

All strains used in this study are derivatives of the enteroaggregative E. coli (EAEC) 
17–2 WT strain except the E. coli CC118λpir strain, which was used for cloning proce
dures. Strains ΔlacZ (55), ΔtssJ (formerly described as ΔsciN; 29), TssB-sfGFP (33), and 
ΔclpV (formerly described as ΔclpV1; 54) have been already described. E. coli cells were 
routinely grown in Lysogeny Broth (LB). For T6SS expression, EAEC cells were grown at 
37°C with agitation in Sci1-inducing medium (SIM; M9 minimal medium supplemented 
with glycerol 0.25%, vitamin B1 200 µg.mL−1, casaminoacids 40 µg.mL−1, MgCl2 1 mM, 
CaCl2 0.1 mM, and LB (10% vol/vol), pH7.1; 55). When required, media were supplemen
ted with kanamycin (50 µg.mL−1) or chloramphenicol (40 µg.mL−1). For assays in the 
presence of different stresses, bile salts (1%, Sigma-Aldrich ref B8756), D-sorbitol (0.8 
M, Sigma-Aldrich ref S7547), or H2O2 (0.1 mM, Sigma-Aldrich ref H1009) were added 
in the medium. Commercial anti-His (6His, Proteintech) and anti-EF-Tu (mAb900, Hycult 
Biotech) monoclonal antibodies were used for immunodetection.

Plasmid and strain construction

Strain 17–2 TssB-N3 bearing an insertion of three residues (AEV) downstream the Gln26 
residue at the chromosomal tssB locus has been engineered using the suicide vector 
pKO3-BN3. First, the pKO3-tssB vector was engineered by restriction/ligation cloning of 
a SmaI-SalI 1,430 bp DNA fragment encompassing the tssB gene into pKO3 (76). This 
fragment was PCR-amplified using a Biometra thermocycler with the Q5 DNA polymer
ase (New England Biolabs) and oligonucleotides CACCACCCGGGTTTCCTCAACACTGG 
and ACGCGTCGACCAGTTGACGGCTGATCTGATAATCAAGCTCTGC (SmaI and SalI restriction 
underlined, respectively). The N3 sequence (GCCGAGGTC, encoding protein sequence 
AEV) was inserted into pKO3-tssB by site-directed mutagenesis using complementary 
oligonucleotides bearing the desired additional sequence (CCTACATACGGGTGGTGGGC
AGGCCGAGGTCAAGAAAGTGGAGCTTCCGCTC and GAGCGGAAGCTCCACTTTCTTGACCTC
GGCCTGCCCACCACCCGTATGTAGG, N3 sequence underlined), to yield pKO3-BN3. The 
pKO3-BN3 plasmid was verified by DNA sequencing (Eurofins) before introduction 
into strain 17–2 by electroporation. The first and second recombination events were 
selected on LB plates supplemented with chloramphenicol at 42°C, and supplemented 
with sucrose (5%), respectively, as previously described (76), to yield strain TssB-N3. 
Strains ΔtssJ TssB-sfGFP, ΔclpV TssB-sfGFP, and TssB-N3-sfGFP have been engineered by 
introducing the sequence encoding the sfGFP to the T6SS native locus on the chromo
some, in frame with the tssB gene in strains ΔtssJ, ΔclpV, and TssB-N3, respectively. 
Chromosomal sfGFP sequence insertion was performed using the one-step inactivation 
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procedure (77) using λ-red recombination carried by vector pKOBEG (78), by electropo
ration of a PCR product corresponding to the pKD4-GFP-Cter (33) sfGFP-kanamycin 
cassette flanked by 50 bp extensions annealing upstream and downstream the last 
codon of tssB. Recombinant strains were selected on LB plates supplemented with 
kanamycin. All strains were checked by colony-PCR using various oligonucleotide pair 
combinations, and further verified by DNA sequencing of the PCR amplification of the 
region of interest.

Quantitative RT-PCR

Total RNAs were extracted from 109 cells using the SV Total RNA Isolation kit (Promega), 
by following the manual instructions. Total RNAs were treated with 1 µL de Turbo DNase 
for 30 min at 37°C, and the reaction was quenched with the addition of 10 µL of 
inactivation beads for 10 min. The supernatant, containing the purified total RNAs, was 
obtained after centrifugation at 10,000 × g for 5 min. 500 ng of total RNAs were mixed 
with oligonucleotide hexamers (Promega) in a final volume of 10 µL and incubated for 
5 min at 70°C. After addition of 10 µL of GoScript Reverse Transcriptase, the mixture is 
incubated for 5 min at 25°C and then for 2 h at 42°C before inactivation for 15 min at 
70°C. The cDNAs were then used for quantitative PCR using a Bio-Rad CFX86 Real-Time 
System. Oligonucleotides used for PCR amplication: 16S RNA (5′-CATGGCTCAGATTGAA
CGCTGGCGG and 5′-CGTTATGCGGTATTAGCTACCGTTTCCAG), tssK (5′-TAATGGCAGTGAGA
GCGAGC and 5′-AACAAGACGGGTAACGGGAC), vgrG (5′-GTGGAGCAAATCCTGACGGA and 
5′-TCCGGGTGCAACGTAAAGAA), tagA (5′-TCAGCAAACTGACTCACCCG and 5′-ACAATCAGA
GCCAGCCCTTG).

Growth measurements

Growth measurements in liquid culture

The parental 17–2 (WT) strain and its isogenic Δsci1, ΔtssJ, ΔclpV, and tssB-N3 mutant 
strains were grown overnight in SIM medium (three independent cultures/strain) and 
diluted to an optical density at λ = 600 nM (A600) of 0.02 in 200 µL of SIM medium (four 
replicates) disposed in a sterile 96-well suspension culture U-bottom microplate with lid 
(CellStar 650 185, Greiner Bio-one) and the A600 was measured every 30 min for 15 h in 
a Tecan microplate reader at 37°C, with 200 rpm shaking. For assays in the presence of 
stresses, the SIM medium was supplemented with 1% of bile salts, 0.1 mM of H2O2, 0.8 M 
of D-sorbitol, or its pH adjusted to 6, or a combination of the four stresses.

Growth measurements on agar

Strains 17–2, Δsci1, ΔtssJ, ΔclpV, and tssB-N3 were grown overnight in SIM medium (three 
independent cultures/strain) and diluted to an A600 of 1. 20 µL were spotted onto 36 
disks disposed on SIM agar plates. Upon incubation at 37°C, three disks were recovered 
at times 2, 3, 4, 5, 6, 7, 8, 9, 10, and 24 h, cells resuspended in 1 mL of SIM and the A600 
was measured.

Competitive growth measurements on agar

Strains 17–2, Δsci1 pTli1, ΔtssJ, ΔclpV, tssB-N3, and ΔlacZ were grown overnight in SIM 
medium (four independent cultures/strain) and diluted to an A600 of 1. Two hundred 
microliters were mixed with 200 µL of the ΔlacZ culture. Twenty microliters were spotted 
onto 15 disks disposed on SIM agar plates. Upon incubation at 37°C, three disks for 
each mixture were recovered at times 4, 8, and 24 h, cells resuspended in 1 mL of SIM 
and serially diluted. Triplicates of 100 µL of the 10−5 (for 4 h) and 10−6 (for 8 h and 
24 h) dilutions were spread onto LB-Xgal/IPTG agar plates and incubated at 37°C. The 
24 h samples were diluted one-third, and 20 µL were spotted onto three new disks 
disposed onto a new SIM agar plate and incubated for 24 h (=48 h sample). The last 
step was repeated twice to yield the 72 and 96 h samples. Blue and white colonies 
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were counted after ON incubation. For assays in the presence of stresses, the SIM agar 
was supplemented with 1% of bile salts, 0.1 mM of H2O2, 0.8 M of D-sorbitol, or its pH 
adjusted to 6, or a combination of the four stresses. For all assays, Wilcoxon statistical 
analyses were performed using the wilcox.test function in R.

SDS-PAGE, western-blotting, imaging, and quantification analyses

Semi-quantitative immunoblotting was performed essentially as previously described 
(21, 79). Standard methods were used for sodium dodecyl-sulfate polyacrylamide gel 
electrophoresis (SDS-PAGE) and protein transfer on nitrocellulose membranes. Mem
branes were probed with anti-His (clone His1, Sigma), and anti-EF-Tu (clone mAb900, 
HyCult Biotech) monoclonal antibodies, and goat anti-mouse secondary antibodies 
coupled to AlexaFluor 680 (Invitrogen). Images were recorded at λ = 700 nM using an 
Odyssey infrared imaging system (LI-COR Bio-sciences). Image analyses were performed 
with the ImageJ processing program using the Fiji interface (80). Briefly, the image 
was first converted to grayscale in .jpg format. The rectangle tool of ImageJ was used 
to select a rectangular area of the size corresponding to the lane width, in order to 
cover the minimal area to contain the whole of the largest band. The same frame was 
used to select each Hcp or EF-Tu band. For each selection, the number of pixels was 
calculated. A control region with no band was also selected to subtract the background. 
The number of pixels of each band, subtracted from the background, was normalized by 
dividing by the EF-Tu loading control intensity, to compensate for loading differences. 
The fold-change relative to the WT strain was then calculated.

Fluorescence microscopy

Cells were grown in SIM medium at 37°C to an A600 of 0.6–0.8, resuspended in fresh SIM 
to an A600 nm of 10, and 2 µL were spotted onto a thin pad of SIM supplemented with 2% 
agarose covered with a glass coverslip. Phase contrast and fluorescence were recorded 
on a Nikon Eclipse Ti2 microscope equipped with a 100 × NA 1.45 Ph3 objective, 
an Orca-Fusion digital camera (Hamamatsu), and a perfect focus system. All fluores-
cence images were acquired with a minimal exposure time to minimize bleaching and 
phototoxicity effects. Exposure times were typically 30 ms for phase contrast and 100 ms 
for fluorescence channel. Images were analyzed using ImageJ (http://imagej.nih.gov/ij/) 
and the MicrobeJ v5.11y plugin (81). Statistical dataset analyses were performed with 
several representative fields from at least three independent biological replicates, using 
Excel and the R software environment. The number of measured cells or events (n) is 
indicated in each figure.
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Figure S1. T6SS gene expression and Hcp production in EAEC mutant strains used in this work.

Figure S2. T6SS phenotypes associated with EAEC mutant strains used in this work.

Figure S3. Growth of T6SS mutant strains in the presence of various stresses. 

Figure S4. A T6SS mutant does not outcompete the wild-type strain in the presence of various stresses.
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Supplemental Figure 1 | T6SS gene expression and Hcp production in EAEC mutant strains used in this
work. (A) qRT-PCR analyses of the T6SS sci1 tssK, vgrG and tagA gene. The expression levels were
normalized to the 16S RNA levels are presented relative to the wild-type strain. (B) Western blot analyses of
Hcp abundance. The total cell extracts of 4×108 cells of the indicated strain producing 6×His-tagged Hcp
(HcpHis) were subjected to 12.5% acrylamide SDS- PAGE and immunodetected with anti-His (upper panel) and
-EF-Tu (lower panel) monoclonal primary antibodies and secondary antibodies coupled to Alexa Fluor 680.
The Hcp levels, normalized to the EF-Tu levels (loading control) are presented relative to the wild-type strain
(under the Hcp blot). Molecular weight markers (in kDa) are indicated on the left.
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Supplemental Figure 2 | T6SS phenotypes associated with EAEC mutant strains used in this work.
Representative fields of fluorescence microscopy recordings of the WT (A), DtssJ (B), tssB-N3 (D) and DclpV
(F) strains expressing a chromosomal tssB-sfGFP fusion. Scale bar, 2 µm. (C) T6SS sheath assembly in WT and
DtssJ cells expressing the chromosomal tssB-sfGFP fusion. Cells with no fluorescence (i.e., that do not express
the T6SS), with diffuse fluorescence (i.e., that express but do not assemble the T6SS) and with tubular structures
(i.e., that assemble the T6SS) are shown in white, green, and stripped green, respectively. The number of cells
analyzed for each strain (n) is indicated on top. (E) Sheath residence time in WT (orange) and tssB-N3 mutant
(red) cells (horizontal bar, mean average). The number of analyzed sheath assembly/contraction events (n) is
indicated on top. Data acquisition has been done for 2,000 sec. (G) T6SS sheath disassembly in WT and DclpV
cells expressing the chromosomal tssB-sfGFP fusion. The percentage of extended and contracted sheaths are
shown in white and blue, respectively. The number of cells analyzed for each strain (n) is indicated on top. 
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Supplemental Figure 3 | Growth of T6SS mutant strains in the presence of various stresses. (A, C, E, G, I,
K) 15-hour growth curves of the wild-type (WT) and Dsci1 strains grown in SIM medium in the presence of the
indicated stress (A, no stress; C, pH6; E, 1% of bile salts; G, 0.8 M of sorbitol; I, 0.1 mM of H2O2; K,
combination of the four stresses). The values represent the average and standard deviation from 8 measures (4
biological replicates, 2 independent measures/replicate). (B, D, F, H, J, L) Box-and-whisker representation
(horizontal bar, median value; lower and upper boundaries of the box plot, 25% and 75% percentiles,
respectively; whiskers, 10% and 90% percentiles) of the growth rates of the WT and Dsci1 strains in SIM
medium in the presence of the indicated stress (B, no stress; D, pH6; F, 1% of bile salts; H, 0.8 M of sorbitol; J,
0.1 mM of H2O2; L, combination of the four stresses).
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Supplemental Figure 4 | A T6SS mutant does not outcompete the wild-type strain in the presence of
various stresses. (A-F) Variation of the ratio of WT (green) or Dsci1 (orange) strains versus 17-2DlacZ over
time grown in SIM agar in the presence of the indicated stress (A, no treatment; B, pH6; C, 1% of bile salts; D,
0.8 M of sorbitol; E, 0.1 mM of H2O2; F, combination of the four stresses). The values represent the average of
2 biological replicates. (G) Competitive indexes of WT (green) or Dsci1 (orange) strains versus 17-2DlacZ
(WT/DlacZ or Dsci1/DlacZ ratio after 96h of co-culture divided by the initial ratio) in the presence of the
indicated stress. The values represent the average of 2 biological replicates. 
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