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-negative bacterium Porphyromonas gingivalis is considered the keystone of peri-
a set of inflammatory conditions that affects the tissues surrounding the teeth. In
e major virulence factors exploited by P. gingivalis have been identified and charac-
cocktail of toxins, mainly proteases called gingipains, which promote gingival tissue
ctors use the Sec pathway to cross the inner membrane and are then recruited
ss the outer membrane by the type IX secretion system (T9SS). In P. gingivalis, most
re attached to anionic lipopolysaccharides (A-LPS), and hence form a virulence coat
. gingivalis produces additional virulence factors to evade host immune responses,
lysaccharide, fimbriae and outer membrane vesicles. In addition to periodontitis, it
broad repertoire of virulence factors enable P. gingivalis to be involved in diverse

h as rheumatoid arthritis, and neurodegenerative, Alzheimer, and cardiovascular dis-
iew the major virulence determinants of P. gingivalis and discuss future directions to
eir mechanisms of action.

� 2021 Elsevier Ltd. All rights reserved.
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n asaccharolytic bacterium;

it generates its metabolic energy by fermenting
amino acids, a property decisive for its survival in
deep periodontal pockets, where sugars are extre-
mely scarce.4 To access amino-acids and peptides,
P. gingivalis secretes a broad variety of proteases
that degrade exogenous proteins to generate pep-
tides that enter the periplasmwhere they are broken
into di- or tri-peptides by dipeptidyl peptidases
before being transported into the cytoplasm by
oligopeptide transporters5 (Figure 1).
P. gingivalis is unique among pathogenic bacteria

in being able to accumulate a cell-surface heme
(iron protoporphyrin IX [FePPIX])-containing
pigment, l-oxo-bisheme ([FePPIX]2O), when
cultured on blood-containing media, yielding a
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black pigmentation. This heme is obtained by
degradation of host proteins, mainly hemoglobin,
by a cocktail of lysine- and arginine-specific
proteinases, called gingipains, and collected by
heme-binding proteins such as hemin-binding
protein 35 (HBP35) and the HmuY hemophore6–8

(Table 1 and Figure 1). Gingipains and HBP35 are
effectors of a secretion apparatus, the type IX
secretion system (T9SS), which is hence the major
determinant of P. gingivalis pathogenesis.9 In
addition, P. gingivalis produces a number of poten-
tial virulence factors such as lipopolysaccharides
(LPS), capsule and fimbriae, that trigger deleterious
effects on host cells, allowing P. gingivalis to invade
cells and tissues, avoiding the immune surveillance
(Table 1 and Figure 1). Once P. gingivalis is estab-
lished within the cell, it secretes an ATP-hydrolase
enzyme that prevents ATP-dependent apoptosis,
allowing its survival into the host.10

P. gingivalis is one of the three components of the
so-called “red complex”, a bacterial association that
also comprises the Gram-negative bacteria
Treponema denticola and Tannerella forsythia.
The presence of the red complex is strongly
correlated with advanced periodontal lesions such
as increased pocket depth and bleeding.1 Recent
studies suggest that, within the red complex, P. gin-
givalis acts as the main pathogen contributing to
microbial imbalance and leading to the disease pro-
gression, whereas T. denticola and T. forsythia con-
tribute to the nososymbiocity of the microbial
community after homeostasis is disrupted, thereby
acting as pathobionts that accelerate disease pro-
gression.11,12 Furthermore, P. gingivalis presents
synergy biofilm formation with T. denticola,13 which
increases the development of gingivitis.14

In addition, bacterial commensals or opportunistic
pathogens of the human oral flora have been shown
to facilitate P. gingivalis infection or to increase its

Figure 1. Major virulence factors of P. gingivalis. Schematic representation of a P. gingivalis cells (yellow,
cytoplasm; green, periplasm; blue lines, inner and outer membranes). The cell is surrounded by an electron dense
surface layer (EDSL, blue) made of gingipains anchored to the cell surface, and by the capsule (grey). Gingipains and
other effectors (blue lozenges) are secreted by the Type IX secretion system (T9SS, orange). Other virulence factors
include fimbriae (green), outer membrane vesicles (OMVs, blue). Mechanisms of acquisition of essential elements:
iron (red circles) acquisition systems (blue), and di- and tri-peptides (peptidases and oligopeptide transporters,
orange) that serve as carbon sources.
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survival. Streptococcus gordonii enhances
accumulation of P. gingivalis in dual species
communities, helps adhesion to gingival tissue by
increasing expression of P. gingivalis fimbrial
adhesins and promotes its survival in murine oral
infection models.15 Similarly, Acinetobacter bau-
mannii increases the abundance of P. gingivalis in
dual species communities, adapting to each
other.16 Finally, the yeast-like fungus Candida albi-
cans, a common species of the oral cavity, depletes
oxygen within poly-species biofilms,17 hence pro-
tecting anaerobic bacteria such as P. gingivalis in
unfavourable, high-oxygen, conditions. In addition,
this C. albicans-P. gingivalis microbial community
influences host immunity by attenuating macro-
phage and fibroblast responses and reducing cyto-
kine production, promoting tissue invasion and
colonization.18,19

Proteins Secreted by Porphyromonas
gingivalis

The major secreted proteins of P. gingivalis
participate in proteolytic degradation of host
proteins, protein citrullination and heme
acquisition (Table 1 and Figure 1). All these
secreted factors share a Sec-dependent signal
sequence for export into the periplasm, and a Ig-
fold C-terminal domain (CTD) that addresses the
proteins to the T9SS.
Gingipains – The gingipain protein family

comprises proteases that cleave upstream
arginine (RgpA and RgpB) or lysine (Kgp)
residues. Gingipains are either secreted in the
milieu or anchored to the cell surface and
represent the major virulence factors of P.
gingivalis.20 Structurally, these proteins share a
similar multidomain organization: from N- to C-
terminal, the signal peptide is followed by a prodo-
main, a catalytic domain, an immunoglobulin-

superfamily fold (IgSF), and the CTD. Additionally,
RgpA and Kgp possess several copies of hemag-
glutinin/adhesion domains (HA) located between
the IgSF and CTD domains.21 These HA domains,
as well as those of the HagA hemagglutinin, have
pleiotropic functions as they have been shown to
promote co-aggregation with other bacteria22 and
tissue colonization through adhesion to epithelial
cells and gingival fibroblasts,23 and to participate
to heme-pigment formation by converting FePPIX.
OH monomers into [FePPIX]2O.24 Expression of
gingipain-encoding genes is downregulated once
the pathogen has invaded the gingival epithelial
cells, suggesting that these proteinases are impor-
tant for the early stages of P. gingivalis infection.25

Indeed, gingipains proteolyse a broad repertoire of
substrates. Gingipains participate to the erosion of
periodontal tissues and to the degradation of iron-
binding proteins, and target important extracellular
matrix components, such as tight-junction associ-
ated protein JAM1, hence disrupting the epithelial
barrier function and allowing P. gingivalis penetra-
tion into subepithelial tissues.26 In addition, by
cleaving T-cell surface proteins such as CD4 and
CD8,27 the IL-6, IL-8, IL-12 cytokines28 and the
gamma-interferon (IFN-c),29 gingipains interfere
with the immune host response and hence facilitate
evasion of host defense mechanisms. P. gingivalis
also secretes Tpr, a cysteine protease of the papain
family.30

Peptidylarginine deiminase – Members of the
Porphyromonas genus are the only bacteria
known to produce and to secrete a
peptidylarginine deiminase (PAD), an enzyme
involved in the citrullination of proteins31 (Table 1).
Citrullination is an enzymatic reaction that converts
arginine into citrulline, a neutral, non-natural amino
acid. By neutralizing a positively-charged residue,
this post-translational modification increases the
overall hydrophobicity of target proteins and causes
protein unfolding and dysfunction.32 Citrullinated

Table 1 Major virulence factors of P. gingivalis.

Virulence factor Major role Actions

T9SS Secretion system – Cell surface exposition of gingipains

– Secretion of iron-chelating proteins

Gingipains Proteolytic enzymes – Degradation of host proteins

– Processing of fimbriae subunits

PAD Peptidylarginine deiminase – Citrullination of host proteins

Type V pili

and Mfa

Fimbriae – Adhesion to host cells

– Bacterial aggregation and biofilms

Lipopolysaccharides Protection – Triggers host signaling pathways

Capsule Protection – Protection against aggressions

– Protection against host complement

OMVs Extracellular vesicles – Toxin delivery and transport
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proteins are targeted by the immune system, and
ultimately lead to autoimmune diseases such as
rheumatoid arthritis (RA). Indeed, a correlation
between the development of RA and severe peri-
odontitis was noticed early33 and further results
demonstrated that Porphyromonas PAD (PPAD)
is a significant factor in the development of experi-
mental periodontitis and RA in mice.34 At the struc-
tural level, PPAD presents an organization similar to
gingipains, with the catalytic domain followed by
IgSF and CTD domains.35

Hemin-binding protein – The hemin-binding
protein 35 (HBP35) is a secreted protein that
plays a significant role in heme acquisition.36 In
addition, HBP35 facilitates P. gingivalis binding to
erythrocytes and host epithelial gingival cells.37

HBP35 possesses a functional 4-cysteine thiore-
doxin motif,36,38 which physiological role is
unknown.

The Type IX Secretion System

The T9SS is a secretion apparatus that is
restricted to bacteria of the Bacteroidetes
phylum.39 Type IX secretion is a two-step mecha-
nism, in which effectors first cross the inner mem-

brane (IM) by the Sec pathway before being
recruited to and transported by the T9SS through
the outer membrane (OM)40 (Figure 2). Deletion of
T9SS genes causes effector accumulation in the
periplasm.9,41 Processing and activation of T9SS
effectors, though studied since decades, remains
unclear. Periplasm-sequestered gingipains have
shown partial enzymatic activity,42,43 but the
requirement of an Ig-like domain for T9SS transport
and the internal diameter of the OM translocon44,45

suggest that T9SS effectors achieve proper folding
in the periplasm, before translocation through the
OM. Effectors are addressed to the secretion appa-
ratus by a conserved ~80-amino acid CTD.46 In P.
gingivalis, CTDs are cleaved when effectors reach
the cell exterior, and effectors are either released
into the extracellular medium or anchored to the
surface by covalent attachment to anionic
lipopolysaccharides (A-LPS).47,48 In wild-type P.
gingivalis, CTD proteins attached to the cell surface
yield an additional electron-dense surface layer that
can be observed by electron microscopy.49

Secretion signal – More than 600 CTD-containing
proteins have been bioinformatically identified in at
least 20 Bacteroidetes species.50 Such as T9SS
subunits, CTD domains are restricted to the Bac-

Figure 2. Organization and mechanism of action of the P. gingivalis Type IX secretion system. Schematic
representation of the T9SS and of the effector secretion pathway. The different subunits of the T9SS are shown, with
their localizations. Subunits of the trans-envelope complex (PorK-L-M-N) are coloured yellow; subunits of the
translocon complex (Sov, Plug, PorV, PorW, PorP, PorE, and possibly PorA, PorT and PorG) are coloured pink;
subunits of the attachment complex (PorQ, PorZ, PorU) are coloured green. The translocation pathway of T9SS
effectors (blue; ss, signal sequence, CTD, C-terminal domain) is depicted: export by the Sec machine (red arrow), and
then transport to the cell exterior or to the cell surface by the T9SS (green arrow). The insert highlights the structure of
the RgpB CTD (PDB: 5HFS). Note that all contacts shown in this figure have not been experimentally established (see
text for details).
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teroidetes phylum, suggesting co-evolution
between CTD substrates and the T9SS appara-
tus.50 CTDs belong to two different families: type-
A (TIGR04183) and type-B (TIGR0413143).51

Type-A CTDs are the most abundant and have
been studied in different Bacteroidetes species.
CTDs are necessary for secretion through the
T9SS, as deletion of these domains causes accu-
mulation of the effectors into the periplasm.52

Type-A CTDs are also sufficient for targeting a
T9SS-unrelated protein to the secretion apparatus,
as fusion of the type-A CTD of P. gingivalis HBP35
to the jellyfish Green Fluorescent Protein (GFP)
supports secretion to the cell exterior in a T9SS-
dependent manner.53 Finally, effectors such as F.
johnsoniae ChiA, are handled by the T9SS, in
absence of any identifiable type-A or type-B
CTD.54,55

Most P. gingivalis CTDs belong to type-A. The
structures of CTDs from three P. gingivalis T9SS
substrates (RgpB, PorZ and HBP35) have been
reported.44,56,57 The structures are well conserved:
they comprise a b-sandwich with an Ig-like fold con-
formation organized in two parallel b-sheets that are
formed by three and four antiparallel strands
respectively44,56,57 (see insert in Figure 2). How
CTD substrates are recruited to the T9SS is not well
understood, but a recent non peer-reviewed study
showed that CTDs interact with two subunits of
the trans-envelope complex, PorM and PorN,58

suggesting that PorM and PorN could constitute
an entry gate for the effectors into the T9SS.
Sequence alignment of type-A CTDs showed that
five motifs, named A-to-E, are conserved including
three (B, D and E) with a high degree of conserva-
tion.46,50 It has been demonstrated that the two last
residues of motif E, are necessary for effector
secretion.59 In contrast, the 22-aminoacid C-
terminal fragment of HBP35, which comprises only
motifs D and E, still supports a significant level of
transport, suggesting that motif B improves sub-
strate transport by the T9SS without being fully
indispensable.53 These motifs are likely involved
in CTD folding and/or interactions with T9SS com-
ponents.46,59 Indeed, a recent study showed that
motif D is required for proper interaction with
PorM.58

Once substrates are translocated across the OM,
CTDs are removed by the sortase-like protein PorU,
which belongs, with PorV, PorZ and PorQ to the
attachment complex.60 The cell surface-exposed
attachment complex is responsible for the covalent
anchoring of T9SS substrates to A-LPS.61 Interest-
ingly, PorU and PorZ, also possess a CTD and are
hence transported to the cell surface by the T9SS.48

In contrast to other T9SS substrates, the PorU and
PorZ CTDs are not cleaved,48,56 suggesting that
specific signals or motifs distinguish the PorU/Z
and effector CTDs.
T9SS components – While the number of genes

required for proper function of the T9SS varies

between species, a set of 18 genes is necessary
in P. gingivalis. Surprisingly, except the
porKLMNP locus, these genes are widespread
within the genome, which is an uncommon
situation for other secretion apparatuses in which
genes are usually clustered.39,62

The T9SS trans-envelope core complex. The
trans-envelope core complex comprises 4
subunits, PorK, -L, -M and -N, which localize in
the cell envelope (coloured yellow in Figure 2).
These genes are, together with porP, genetically
linked on the chromosome and co-transcribed
(Table 1).63 Blue native gel electrophoresis (BN-
PAGE) assays suggested that the PorKLMN pro-
teins assemble large complexes of over 1.2 MDa.9

PorL and PorM are inner membrane proteins, while
PorN is a periplasmic protein and PorK an outer
membrane lipoprotein.
PorL presents two TMHs and a cytoplasmic

domain.63 PorM is anchored into the IM by a single
TMH, and possesses a large periplasmic C-terminal
domain (PorMp). PorM forms homodimers and
interacts with PorL via their transmembrane helices
(TMHs), and with PorN in the periplasm.63 The crys-
tal structures of the periplasmic domains PorM and
its homologue GldM from F. johnsoniae were
solved: they both comprise four domains, including
a N-terminal all-a-helical domain, and three Ig-like
domains.64,65 Interestingly, the dimer presents
swapping elements, were strands from a monomer
complete the structure of the second monomer. In
addition, kinks exist between the first and second
and between the second and third domains,64,65

as well as between the transmembrane portion
and first periplasmic domain.66 Recently, it has
been shown that the PorLM sub-complex serves
as energy module by converting electrochemical
energy into mechanical energy to power T9SS
assembly or effector transport.63,66 In F. johnso-
niae, gliding motility is dependent on the proton-
motive force and on a functional GldLM module
(PMF).66,67 The cryo-EM structure of a truncated
GldLM complex demonstrated that it forms an
asymmetric motor of GldL5GldM2 stoichiometry.66

The GldL TMHs assemble a pentameric cage that
surrounds two copies of the GldM TMH;66 an orga-
nization similar to the PMF-dependent ExbBD or
MotAB molecular motors.68–70 Energy modules
using PMF usually carry protonotable glutamate or
aspartate residues within their TMHs, as in the case
of MotAB, ExbBD or TolQR.71 Interestingly,
sequence analysis revealed that PorM and PorL
TMHs bears conserved residues, including a gluta-
mate residue in PorL TMH2.63,72 In the GldLM com-
plex structure, the Arg-9 residue of one GldM TMH
copy forms a salt bridge with residue Glu-49 of
GldL, and it is suggested that protonation of GldL
Glu-49 breaks this Arg-9/Glu-49 ion pair and
induces reorientation of the GldLM TMHs.66 It is
proposed that electrochemical energy is converted
to mechanical movement via the rotation of the
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two copies of GldM TMH, and subsequent confor-
mation changes within the GldM periplasmic
domains.66

PorK and PorN form a stable complex of 1:1
molecular ratio, associated to the outer
membrane.41 Electron microscopy analyses
showed that PorKN assemble into ~50-nm large
ring-like structures that can comprise 32–36 copies
of PorKN.41 Recently, an in vivo cryo-electron
tomography study confirmed these in vitro results
and further proposed an organization in double-
layered ring.73

The T9SS translocon. Until recently, the identity
of the T9SS OM pore was a mystery. As a
conserved and large (267 kDa) predicted OM
component required for T9SS, the Sov protein
was an obvious candidate.39,74–76 In 2018, the F.
johnsoniae Sov homologue SprA was isolated in
complex with a peptidyl-prolyl cis–trans isomerase,
and either the PorV OM b-barrel or the Fjoh_1759
plug protein45 (coloured pink in Figure 2). Cryo-
electron microscopy analyses of these complexes
showed that SprA is a giant 36-strand b-barrel with
a lateral opening and delimiting a 70-�A internal
channel that is large enough to allow the transit of
folded substrates. In the “PorV” complex, SprA dis-
plays a lateral opening that is filled by a loop of
PorV. This loop penetrates inside the lumen of the
SprA pore,45 supporting the hypothesis that PorV
collects substrates from the translocon and shuttles
them to the attachment complex.77 In the “Plug”
complex, PorV is absent and the lateral opening of
SprA is unobstructed, but the pore is plugged at
the periplasmic entrance by the Fjoh_1759 pro-
tein.45 These two complexes are likely to represent
two different states of the mechanism of transport:
while the “PorV” complex may correspond to the
open complex, prior to substrate engagement, the
“Plug” complex may represent the pore after sub-
strate release, occluded to preserve membrane
permeability. Recently, a partner of PorV, named
PorA, was identified in P. gingivalis and proposed
to be a component of the translocon complex. How-
ever, PorA is absent in most T9SS+ bacteria and
might be specific to gingipains.73 More recently,
PorA was suggested to be involved in a signaling
pathway from the translocon to the PorXY-SigP
transcriptional regulatory system.78

The attachment complex. As mentioned above,
most of the T9SS substrates are anchored to the
cell surface rather than being secreted into the
extracellular medium. In P. gingivalis, the CTD
signal of the substrate is cleaved at the cell
surface and the new C terminus is covalently
attached to A-LPS by a sortase-like mechanism
carried out by PorU.61,79

PorU possesses a CTD domain and hence is
transported to the cell surface in a T9SS-
dependent manner; however, the PorU CTD is not
cleaved. Deletion of the porU gene leads to partial
substrate secretion but prevents CTD cleavage

and substrate attachment.48 PorU has therefore a
dual activity: CTD cleavage and A-LPS attachment.
Substrate maturation is mediated by the PorU cys-
teine proteinase activity. Similar to sortases, PorU
proteins bear a conserved arginine residue that is
likely part of the catalytic site involved in A-LPS
attachment.61 In addition, PorU is involved in the
activation of gingipains by removing their inhibitory
N-terminal pro-domain.80

PorU is a subunit of the T9SS attachment
complex, which also comprises PorV, PorZ and
PorQ60 (coloured green in Figure 2). PorV (formerly
known as LptO) is a 14-strand b-barrel outer mem-
brane protein and a member of the fatty acid FadL
transporters family.45,49,77 Initially, PorV was shown
to be involved in deacetylation of A-LPS and hence
in the coordination of LPS and T9SS effector pro-
cessing.49,81 PorV binds to multiple CTD proteins;77

a result that correlates well with the PorV structure
in complex with SprA, where a loop outwards the
PorV barrel penetrates the interior of SprA through
its lateral opening.45 It is suggested that this loop
mediates recognition of T9SS substrates in the
translocon and shuttles them to the attachment
complex. Indeed, PorV associates tightly with the
Sov translocon45 and with the PorU C-terminal sig-
nal peptidase.82

The function of the cell surface-exposed PorZ
subunit is not well defined but it has been
proposed based on its crystal structure that it
could bind and recruit A-LPS.56 Indeed, recent data
demonstrated that PorZ specifically binds to A-LPS
and feeds the PorU sortase with A-LPS.83 BN-
PAGE analysis showed that PorZ interacts with
PorQ,73 a FadL-like OM b-barrel protein family that
improves the efficiency of the type IX secretion
apparatus.9,73,77,79

Additional T9SS components. Other
uncharacterized or poorly characterized T9SS
components have been reported, all being
associated to the OM. These include the PorP,
PorT, and PorG OM b-barrels and the PorE, PorF
and PorW outer membrane lipoproteins. The
essential PorG subunit interacts with the PorKN
ring and has been suggested to facilitate
assembly or stability of the ring.41,84 By contrast,
no information is available regarding the accessory
PorF protein except that it improves the efficiency of
the T9SS.76 PorW, known as SprE in F. johnsoniae,
is an OM lipoprotein that interacts with the Sov
translocon and a protein of unknown function,
PGN_1783.73 It is proposed that PorW links the
PorKN submembrane ring to the Sov translocon.73

While the localization of PorT has been subject of
debate,43,85,86 it is now admitted that it is an OM
b-barrel, but its role in type IX secretion remains
unknown.
In P. gingivalis, the porP gene is co-transcribed

with the porKLMN genes and its product has been
shown to interact with the PorK and PorM
proteins.63 Interestingly, porP gene homologues
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(sprF) are in multiple copies in the F. johnsoniae
genome, and are genetically linked to genes encod-
ing porE homologues and substrates with a type-B
CTD, suggesting that SprF-PorE modules are
involved to the secretion of specific T9SS type-B
substrates.87 In P. gingivalis, only one substrate,
PG1035, possesses a type-B CTD. Interestingly,
PG1035 was shown to form a complex with PorP
and PorE.73 The PorE lipoprotein (formerly known
as PG1058) is composed of four domains: a tetratri-
copeptide repeats domain, a five-bladed b-propeller
domain, a carboxypeptidase regulatory domain-like
fold, and an OmpA_C-like domain.88 Recently, the
structure of the OmpA_C-like domain was solved
in complex with a peptidoglycan fragment, suggest-
ing that PorE anchors the T9SS to the peptidogly-
can layer.89

Finally, the housekeeping PGN_0300 Skp/
OmpH-like periplasmic chaperone was shown to
be necessary for the function of the P. gingivalis
T9SS, likely by stabilizing the PorU sortase.90

Regulation of T9SS genes – Little is known
regarding the regulatory mechanism of T9SS
genes expression in P. gingivalis. Three regulators
have been identified based on the downregulation
of T9SS genes and reduction of gingipain activity
in their absence: the two-component system PorY
sensor and PorX response regulator,9 and the SigP
extracytoplasmic sigma factor.91 By contrast to
most response regulators, PorX does not bind to
DNA, but interacts with SigP, and this interaction
is necessary for SigP to bind to promoter regions
of several T9SS genes.91 In addition, PorX binds
to the C-terminal hydrophobic region of the T9SS
PorL protein, suggesting that PorX may regulate
the activity of the T9SS.92 How the PorXY two-
component system is activated is not known but
recent data have shown that the translocon-
associated PorA protein participates to the signal-
ing cascade.78 Finally, other factors have been
shown to modulate the expression of P. gingivalis
genes encoding T9SS subunits and effectors, such
as the orphan response regulator RprY,93 (p)ppGpp
levels,94 deletion of T9SS accessory proteins;56 or
dual-species biofilm formation with S. gordonii.95

Other Virulence Factors

Fimbriae – Fimbriae are a variety of adhesive
pilus structures on the cell surface of bacteria
(Figure 1). In pathogenic species, fimbriae are
often crucial virulent factors, being involved in
attachment and infection of target cells, evasion of
the host immune system, or biofilm formation.96 P.
gingivalis produces short (Mfa pili) and long (Type
V pili) fimbriae (Table 1). By their adhesive proper-
ties they participate to polyspecies biofilm formation
with synergistic species, cell host colonization, and
development of periodontitis.97,98 Type V pili are
composed of themajor FimA fimbrillin. Interestingly,
FimA are first transported to the cell surface as

lipoproteins and are then proteolytically processed
by the Arg-protease RgpB gingipain before being
polymerized into fimbrial structures by a strand-
exchange mechanism.99–101 In addition to promot-
ing adhesion to host tissues, long fimbriae bind
a5b1-integrins102 and inhibit the Toll-like receptor
(TLR)-mediated proinflammatory response103

allowing P. gingivalis to invade host cells. Finally,
long fimbriae mediate coaggregation with other oral
pathogens such as Treponema denticola, Strepto-
coccus oralis or S. gordonii.102,104 Similar to Type
V pili FimA, the major fimbrillin of the Mfa short fim-
briae, Mfa1, is also processed by gingipains before
being polymerized.105 Interestingly, recent data
have shown that mimetic peptides are efficient to
inhibit polymerization of Mfa pili and hence reduce
the ability of P. gingivalis to form dual-species bio-
films with S. gordonii.106

Lipopolysaccharide and capsule – Such as other
Gram-negative bacteria, the outer leaflet of the P.
gingivalis OM is mainly composed of
lipopolysaccharides (LPS). LPS molecules are
recognized by the host and commonly trigger
intracellular signaling pathways (Table 1). P.
gingivalis produces two types of LPS: O-LPS and
A-LPS. A-LPS triggers a reduced proinflammatory
activity compared to conventional LPS and is
required for serum resistance.3,107 Because A-
LPS is necessary for attachment of gingipains and
other T9SS effectors at the cell surface, mutations
affecting A-LPS production lead to loss of virulence
and aberrant protein sorting into the OM.108 The
polysaccharide portion of A-LPS is synthesized by
a specific pathway, recently designed as Wbp/
Vim.109–112 In addition to the electron-dense surface
layer constituted of T9SS effectors attached to A-
LPS, most strains of P. gingivalis are covered by a
capsule that protects the bacterium from aggres-
sions and from killing by the host complement
(Table 1 and Figure 1), and hence encapsulated
strains are more virulent in a mouse model of
infection.113,114

Outer membrane vesicles – Gram-negative
bacteria normally produce outer membrane
vesicles (OMVs) that are composed of a single
membrane derived from their OM.115 OMVs are vir-
ulence factors involved in the release of toxins,
defence against other bacteria and bacterial adher-
ence.116 Due to the additional layer of effectors
bound to the A-LPS of the OM, P. gingivalis OMVs
are enriched in gingipains and other CTD proteins
anchored at the cell surface and hence participate
to toxin delivery and pathogenicity86,108,117–119

(Table 1 and Figure 1).

Conclusive Remarks and Research
Outlook

P. gingivalis is an important human pathogen.
Initially identified as the etiologic agent of oral
diseases such as gingivitis and periodontitis, the
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presence of P. gingivalis was more recently linked
to the development of neuroinflammatory
disorders. Indeed, early researches correlated
periodontitis with dementia and Alzheimer’s
disease (AD).120 Later, studies using animal models
showed that chronic oral application of P. gingivalis
caused neuropathologies characteristics of AD.121

While how P. gingivalis induces neuropathologies
is not known, mice oral infection with P. gingivalis
resulted in (i) brain inflammation and increased pro-
duction of amyloid-b, the main component of amy-
loid plaques, and (ii) gingipain-dependent
cleavage of Tau, a protein necessary for normal
neuronal function.122 Understanding the molecular
bases on howP. gingivalis induces neurological dis-
orders is of critical importance for therapeutic pur-
poses. Notably, vaccines or treatments that
interfere with Porphyromonas growth will be of
specific interest. Recently, a number of molecules
that affect P. gingivalis growth or reduce its overall
virulence have been identified such as the SSAP
or the sialidase DANA inhibitors.123–125

Oral diseases provoked by P. gingivalis are
exacerbated by the presence of other bacterial
species, such as those of the “red complex”, T.
denticola and T. forsythia, as well as S. gordonii.
Current researches should now focus to
understand how these different bacterial species
coordinate their action and how they
synergistically cause diseases. Here again,
inhibitors or antibodies that target fimbriae
biogenesis or adhesins, involved in interspecies
interactions have been recently developed.106,126

As emphasized in this review, and similarly to
what is observed in many pathogens, the
virulence of P. gingivalis is multifactorial. While the
capsule protects the bacterium from external
aggressions, LPS and OMVs trigger pro-
inflammatory cytokine and chemokine responses,
and thus play an important role during the
infection process. However the key virulence
factor is the type IX secretion system. This
multiprotein transport apparatus translocates
effectors through the OM and covalently attaches
them on the A-LPS at the cell surface, and
indirectly participates to fimbriae assembly by
secreting proteases that process fimbrial subunits.
The major P. gingivalis effectors include the
gingipain proteases, and the citrullinating PAD
toxin. Given the broad range of activities
combined with cell surface localization, it is not
surprising that gingipains have been considered
for a long time as promising targets for designing
preventive strategies like inhibitors and vaccines,
not only for periodontitis treatment123,127 but also
to prevent brain colonization and neurodegenera-
tion.122 Several potent inhibitors of gingipains or
proteases activity have been described.127–132 In
addition, CI-amidine, a known inhibitor of citrullinat-
ing proteins, is also active on the PAD.133 However,
due to the redundancy of gingipains, a better solu-

tion will be to target the secretion apparatus itself.
By blocking the T9SS, such inhibitors will prevent
cell surface exposure of the gingipains and of
PAD, and will indirectly hamper fimbriae biogene-
sis. While virulence blockers that target other secre-
tion systems have been developed,134–138 no
inhibitor of the T9SS has been described so far.
Understanding how the function of the different
components of the apparatus, solving the structure
of the subunits or of sub-complexes, and defining
how effectors are recognized, selected, sorted
and transported is of critical importance to rationally
design molecules or peptides that will block the bio-
genesis or mode of action of the T9SS. This will not
only provide potential treatments against gingivitis
and periodontitis but also might be an alternative
strategy to reduce the risk of extra-oral diseases
such as cardiovascular and neurological disorders.
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Potempa, J., Xavier Gomis-Rüth, F., (2019). Structure,
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