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The bacterial type VI secretion system is one of the key players 
for microbial competition and an important virulence fac-
tor during bacterial infections. This versatile nanomachine 

delivers a wide arsenal of effector proteins directly into prokaryotic 
and eukaryotic target cells1–4. T6SS antibacterial activities promote 
privileged access to the niche, to nutrients or to DNA. In most 
cases, T6SS causes damage within competitor bacterial cells and 
therefore participates in the reshaping of bacterial communities 
such as the microbiota5,6. In addition, some T6SS confer antihost 
capabilities, such as phagocytosis inhibition, by remodelling the 
host cell cytoskeleton7–10.

The T6SS belongs to the broad family of contractile injection 
systems (CISs) that includes bacteriophages, high-molecular-
weight tailocins such as R-pyocins and specific apparati necessary 
for the establishment of symbiosis or for the induction of mor-
phological changes11–16. All these structures comprise a common 
core: the tail. CIS tails are composed of an inner tube wrapped 
by a sheath built under an extended, metastable conformation on 
an assembly platform, the baseplate. The T6SS tail tube/sheath is 
a hundred-nanometre-long cytoplasmic structure. It is made of 
TssB/C subunits that polymerize to form the contractile sheath17,18, 
which surrounds the attacking arrow composed of an inner tube of 
stacked haemolysin coregulated protein (Hcp) hexameric rings19,20 
tipped by the trimeric VgrG puncturing spike21. Various signals, 
such as contact with the target cell, chemical signals released by 
competitor or kin cells, response to attacking cells or conjugative 
transfer, induce structural rearrangements of the sheath leading 
to its contraction and to the propulsion of the Hcp-VgrG arrow 

into the target cell 22–25. Assembly of the tail tube/sheath is initi-
ated on the baseplate. In addition to controlling sheath extension, 
the baseplate also serves to trigger sheath contraction. During T6SS 
biogenesis, the baseplate docks to a trans-envelope complex17,26–28 
composed of TssJ, TssL and TssM29,30. By connecting the tail to the 
membrane complex and initiating tail tube/sheath polymerization, 
the baseplate is a central piece of the T6SS machinery. In addition, 
by binding cargo effectors through VgrG, the T6SS baseplate also 
serves as an effector-sorting platform2,3,31.

CIS baseplates comprise a minimal core of five proteins that 
share homology with the prototypical T4 phage gp6, gp7, gp25, 
gp53 and gp27 proteins11. Gp6, gp7, gp25 and gp53 assemble into 
a unit called a wedge32. Biogenesis of the baseplate occurs by the 
polymerization of six wedges around the central gp27 hub32,33. The 
T6SS baseplate is composed of five essential subunits: TssE, TssF, 
TssG, TssK and VgrG27. TssE is a structural homologue of gp2534 
and has been recently identified as the sheath initiator35; TssF shares 
a homology with the amino (N)-terminal region of gp6, whereas 
TssG has been proposed to fulfil the role of gp7 or gp5327,36. VgrG is 
a chimeric protein in which the gp27 hub is fused to the oligonucle-
otide/oligosaccharide-binding (OB)-fold/β -helix needle of gp57,21. 
TssF and TssG interact tightly and stabilize each other27. TssK inter-
acts with the TssFG complex27,37. Taylor et al. recently reported the 
purification of the TssKFG complex bound to TssE36. Hence, it is 
proposed that TssFG, TssKFG and TssKFGE are assembly inter-
mediates of the T6SS baseplate and have structural and functional 
homologies to the bacteriophage wedges. In agreement with this 
hypothesis, contacts between the TssFG complex and VgrG have 

Biogenesis and structure of a type VI secretion 
baseplate
Yassine Cherrak1,8, Chiara Rapisarda" "2,3,8, Riccardo Pellarin4, Guillaume Bouvier4, Benjamin Bardiaux" "4,  
Fabrice Allain4, Christian Malosse5,6, Martial Rey5,6, Julia Chamot-Rooke5,6, Eric Cascales" "1, 
Rémi Fronzes" "2,3* and Eric Durand1,7*

To support their growth in a competitive environment and cause pathogenesis, bacteria have evolved a broad repertoire of 
macromolecular machineries to deliver specific effectors and toxins. Among these multiprotein complexes, the type VI secre-
tion system (T6SS) is a contractile nanomachine that targets both prokaryotic and eukaryotic cells. The T6SS comprises two 
functional subcomplexes: a bacteriophage-related tail structure anchored to the cell envelope by a membrane complex. As in 
other contractile injection systems, the tail is composed of an inner tube wrapped by a sheath and built on the baseplate. In the 
T6SS, the baseplate is not only the tail assembly platform, but also docks the tail to the membrane complex and hence serves as 
an evolutionary adaptor. Here we define the biogenesis pathway and report the cryo-electron microscopy (cryo-EM) structure 
of the wedge protein complex of the T6SS from enteroaggregative Escherichia coli (EAEC). Using an integrative approach, we 
unveil the molecular architecture of the whole T6SS baseplate and its interaction with the tail sheath, offering detailed insights 
into its biogenesis and function. We discuss architectural and mechanistic similarities but also reveal key differences with the 
T4 phage and Mu phage baseplates.
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