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Priming and polymerization of a 
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Contractile injection machines are nano-structures evolved to deliver 
macromolecules into target cells1. These machines have been elabo-
rated for different purposes such as the injection of DNA into host 
cells in the case of bacteriophages, for the delivery of protein effectors 
into bacterial or eukaryotic cells in the case of R-pyocins, Photorhabdus 
virulence cassettes, anti-feeding prophages or type VI secretion sys-
tems (T6SS) or for inducing metamorphosis in invertebrates1–6. These 
machines include a tubular edifice called a tail1,7,8. The tail is essentially 
composed of a rigid inner tube wrapped by a contractile structure—
the sheath—that is assembled in an extended conformation that stores 
mechanical energy necessary for its contraction and to propel the inner 
tube towards the target8. The tail is assembled on the baseplate that var-
ies in terms of composition and number of subunits; however, a min-
imal baseplate consists of the hub protein surrounded by wedges1,7,8. 
The baseplate is not only the platform for the assembly of the tube/
sheath, but also an important component of the signalling cascade that 
triggers sheath contraction1,8. Tails are usually completed by terminator 
proteins that stabilize the sheath and maintain tube and sheath together 
at the distal end to prevent energy dissipation during sheath contraction 
and to permit proper ejection of the inner tube8–10.

The T6SS is composed of a contractile structure anchored to the cell 
envelope by the TssJLM membrane complex that serves as a docking sta-
tion as well as a channel for the passage of the inner tube during sheath 
contraction11–14 (Extended Data Fig. 1a). The contractile structure is 
composed of the tail tube made up of stacks of Hcp hexameric rings, 
wrapped by a sheath-like structure consisting of the TssB and TssC sub-
units (Extended Data Fig. 1a)14. During T6SS biogenesis, the assembly 
of the tube and sheath are coordinated: the insertion of a tube ring 
immediately preceding that of a sheath block15. This tail polymerizes on 
a baseplate-like complex composed of the VgrG hub and the TssE, TssF, 
TssG and TssK subunits16–19 (Extended Data Fig. 1a). The TssBC sheath 
polymerizes in tens of seconds to build an ∼600-nm long structure that 

contracts in a few milliseconds17. Contraction of the sheath propels the 
Hcp inner tube towards the target cell, like a ‘nano-crossbow’14, and 
is responsible for the delivery of toxin effectors, as it correlates with 
lysis of the competitor bacterium20,21. Recent cryo-electron micros-
copy studies have revealed the atomic structure of the T6SS sheath 
in its contracted conformation22,23. The sheath is a helical structure 
composed of 6-TssB/TssC heterodimer strands, each heterodimer 
being stabilized by an intra- and inter-strand handshake domain23. In 
addition, a cryo-electron microscopy study of the pyocin R2 has pro-
vided information regarding the atomic structure of this contractile 
nanotube in its extended conformation and on how it interacts with 
the inner tube2. Although the general mechanism of T6SS assembly  
and the structure of the T6SS sheath are now well documented, critical 
details are missing, such as how the polymerization of the sheath is 
controlled, how tube and sheath assembly is coordinated and how tail 
polymerization is stopped.

TssA initiates tail tube/sheath polymerization
During T6SS tail biogenesis, the recruitment and assembly of Hcp 
hexamers and TssBC sheath blocks should be coordinated and the tail 
tube and sheath should be firmly attached together at the distal end to 
allow proper tube throwing during contraction. We therefore hypoth-
esized that at least one of the T6SS core proteins must be required to 
coordinate and/or terminate Hcp/TssBC tail assembly. Such candidate 
subunit(s) should interact with both the tube protein (Hcp) and with 
at least one component of the sheath (TssB and/or TssC). We there-
fore performed a systematic bacterial two-hybrid analysis in which 
Hcp, TssB and TssC were used as baits to identify prey partners within 
T6SS subunits. Extended Data Fig. 1b shows that a number of baseplate 
components (TssE, TssF, TssG and VgrG) interact with either Hcp or 
TssC. However, a unique protein, TssA (GenBank accession number: 
284924261), interacts with both tube and sheath components. Recent 

Contractile tails are composed of an inner tube wrapped by an outer sheath assembled in an extended, metastable 
conformation that stores mechanical energy necessary for its contraction. Contraction is used to propel the rigid inner 
tube towards target cells for DNA or toxin delivery. Although recent studies have revealed the structure of the contractile 
sheath of the type VI secretion system, the mechanisms by which its polymerization is controlled and coordinated with 
the assembly of the inner tube remain unknown. Here we show that the starfish-like TssA dodecameric complex interacts 
with tube and sheath components. Fluorescence microscopy experiments in enteroaggregative Escherichia coli reveal 
that TssA binds first to the type VI secretion system membrane core complex and then initiates tail polymerization. TssA 
remains at the tip of the growing structure and incorporates new tube and sheath blocks. On the basis of these results, 
we propose that TssA primes and coordinates tail tube and sheath biogenesis.
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