A phospholipase A₁ antibacterial Type VI secretion effector interacts directly with the C-terminal domain of the VgrG spike protein for delivery

Nicolas Flaugnatti,1 Thi Thu Hang Le,2,3 Stéphane Canaan,4 Marie-Stéphanie Aschtgen,1† Van Son Nguyen,2,3 Stéphanie Blangy,2,3 Christine Kellenberger,2,3 Alain Roussel,2,3 Christian Cambillau,2,3 Eric Cascales1 and Laure Journet1*

1Laboratoire d’Ingénierie des Systèmes Macromoléculaires, CNRS – Aix-Marseille Université, UMR 7255, Institut de Microbiologie de la Méditerranée, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France.
2Architecture et Fonction des Macromolécules Biologiques, CNRS – UMR 7257, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France.
3Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France.
4Laboratoire d’Enzymologie Interfaciale et de Physiologie de la Lipolyse, CNRS – Aix-Marseille Université, UMR 7282, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France.

Accepted 26 November, 2015. *For correspondence. E-mail ljournet@imm.cnrs.fr; Tel. 33491164156; Fax 33491712124.
†Present address: Laboratoire des Sciences de l’Environnement Marin (LEMAR), Institut Universitaire Européen de la Mer (IUEM), Université de Bretagne Occidentale, CNRS, IRD, Ifremer – UMR 6539, Technopôle Brest Iroise, 29280, Plouzané, France.

Summary

The Type VI secretion system (T6SS) is a multiprotein machine that delivers protein effectors in both prokaryotic and eukaryotic cells, allowing interbacterial competition and virulence. The mechanism of action of the T6SS requires the contraction of a sheath-like structure that propels a needle towards target cells, allowing the delivery of protein effectors. Here, we provide evidence that the entero-aggregative Escherichia coli Sci-1 T6SS is required to eliminate competitor bacteria. We further identify Tle1, a toxin effector encoded by this cluster and showed that Tle1 pos-

Introduction

The T6SS is built by the assembly of at least 13 proteins encoded by usually clustered genes. A transmembrane complex anchors to the cell envelope a phage-like tail complex that extends from the membrane in the cytoplasm (Coulthurst, 2013; Ho et al., 2014; Zoued et al., 2014; Basler, 2015). The membrane complex serves as docking station for assembly of the tail complex (Durand et al., 2015), a dynamic tubular structure functionally and structurally homologous to the contractile tail of bacteriophages (Bönemann et al., 2009; Leiman et al., 2009; Bönemann et al., 2010; Basler et al., 2012). It is constituted of an inner tube made of stacked hexameric rings of the Hcp protein, whose three-dimensional structure is very similar to that of the bacteriophage tail tube gpV (Mougous et al., 2006; Pell et al., 2009; Ballister et al., 2008; Brunet et al., 2014; Douzi et al., 2014). This Hcp edifice resembles a channel-like tubular structure with a 40-Å internal diameter and is surrounded by a contractile sheath made of the TssB and TssC proteins (Kudryashev et al., 2015). The inner tube/sheath structure is built on an assembly platform – the baseplate – that contacts the membrane